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We consider the effects of critical-layer nonlinearity on spatially growing oblique 
instability waves on compressible shear layers between two parallel streams. The 
analysis shows that mean temperature non-uniformities cause nonlinearity to occur 
a t  much smaller amplitudes than it does when the flow is isothermal. The nonlinear 
instability wave growth rate effects are described by an integro-differential equation 
which bears some resemblance to the Landau equation in that it involves a cubic- 
type nonlinearity. The numerical solutions to this equation are worked out and 
discussed in some detail. We show that inviscid solutions always end in a singularity 
a t  a finite downstream distance but that viscosity can eliminate this singularity for 
certain parameter ranges. 

1. Introduction 
There has recently been a resurgence of interest in understanding the stability 

characteristics of supersonic mixing layers (Papamoshou & Roshko 1986, 1988 ; 
Jackson & Grosch 1988; Tam & Hu 1989). The primary motivation seems to come 
from its potential application to the control of mixing in hypersonic propulsion 
systems (Kumar, Bushnell & Hussaini 1987). 

Harmonic excitation of free shear layers between parallel streams produces a 
monochromatic spatially growing instability wave that is initially governed by linear 
dynamics for sufficiently small excitation amplitudes. The excitation frequency is 
usually chosen so that the initial instability wave growth rate is near the maximum 
for the shear layer a t  the excitation position so that viscous shear layer spreading 
produces a gradual reduction in the local growth rate even though the instability 
wave amplitude continues to increase. Nonlinear effects can then become important 
in a ‘critical layer ’ a t  the transverse position where the mean flow and instability 
wave phase velocities are equal (once the instability wave amplitude becomes 
sufficiently large and its growth rate becomes sufficiently small). The unsteady 
critical-layer flow is then governed by a nonlinear vorticity equation, while the 
motion outside the critical layer remains essentially linear. The external instability 
wave growth rate is, however, completely controlled by the nonlinear dynamics of 
the critical layer. 

Goldstein & Leib (1988) and Goldstein & Hultgren (1988) analysed this 
phenomenon for an incompressible (and therefore subsonic) shear layer. They 
consider only a two-dimensional flow, since the two-dimensional instability is the 
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most rapidly growing linear mode in that case. In  this paper, we analyse the 
corresponding problem for compressible shear layers in which oblique modes can 
grow faster than the two-dimensional mode if the Mach number is sufficiently large 
(Gropengeisser 1969). The analysis must therefore be extended to the three- 
dimensional case. The calculated reduction in linear growth rates with increasing 
Mach number (Gropengeisser 1969) suggests that  nonlinear critical layer effects will 
be correspondingly more important in supersonic flows. Goldstein & Leib (1988) and 
Goldstein & Hultgren (1988) show that two-dimensional critical-layer nonlinearity 
occurs at the downstream position where the deviation of the local thickness 
Strouhal number, or normalized frequency, from its neutral value is O(&, where 
E 4 1 is the small local instability wave amplitude. The latter analysis, which 
includes viscous effects within the critical layer, shows that even very small viscosity 
eventually causes the critical layer to evolve into a quasi-equilibrium critical layer 
similar to the one originally considered by Benney & Bergeron (1969). 

The present analysis shows that the critical-layer nonlinearity behaves quite 
differently for non-isothermal flows - primarily because (as pointed out by Reshotko 
1960) the temperature fluctuations have an algebraic singularity in the critical layer 
and therefore become very large relative to the remaining velocity components in the 
plane of the wave. This causes the critical-layer nonlinearity to occur a t  a much 
smaller amplitude vis-ti-vis the two-dimensional isothermal case. In  fact: nonlinearity 
now becomes important when the instability wave growth rate is O ( @ ) .  Hickernell 
(1984), who considered temporally growing Rossby waves in the beta-plane 
approximation, found a similar scaling for critical layers associated with certain 
singular neutral modes. 

This change in scaling relative to  the two-dimensional isothermal case produces a 
corresponding change in critical-layer structure, The critical-layer flow is now 
governed by linear dynamics to lowest order of approximation, with nonlinearity 
entering only through the higher-order (inhomogeneous) terms. The instability wave 
growth rate is still completely controlled by the nonlinear terms, but can now be 
calculated from an amplitude equation similar to the one found by Hickernell (1984) 
for the Rossby wave singular modes - even though our critical-layer vorticity 
distribution is quite different from his. 

The amplitude equation can be normalized so that its solutions depend on two real 
parameters, one of which is related to  the scaled growth rate of the linear instability 
wave entering the nonlinear region, while the other can be thought of as a normalized 
temperature gradient. The resulting normalized equation still has to be solved 
numerically. This is accomplished by using a fourth-order predictor-corrector 
scheme to integrate in the downstream direction, starting from the upstream linear 
state which is prescribed far upstream in the flow (relative to the streamwise 
lengthscale of the nonlinear region). 

The calculated instability wave amplitudes initially follow the prescribed linear 
growth, but soon begins to either saturate or increase their rate of growth when the 
nonlinear effects come into play. Cumulative history effects eventually counteract 
these trends, causing a rapid increase in amplitude which ends in a singularity a t  a 
finite downstream distance in the inviscid case. An equilibrium solution exists for 
certain parameter ranges in the viscous case. We obtain asymptotic solutions (to the 
amplitude equation) for each of these cases. The problem was rescaled in the 
immediate vicinity of the singularity in the singular case in order to obtain the local 
asymptotic solution, which suggests that  the flow will become fully nonlinear 
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everywhere in the shear layer and that the motion will then be governed by the full 
three-dimensional Euler’s equations. This will be pursued in a forthcoming paper. 

The overall plan of the payer is as follows. The problem is formulated in $2, where 
we show how the nonlinear critical layer gradually evolves from the strictly linear 
finite-growth-rate solution. A general compressible shear layer with arbitrary mean 
temperature profile is considered, but we restrict the analysis of the unsteady flow to 
the inviscid case. The flow outside the critical layer is a linear, unsteady three- 
dimensional perturbation about the two-dimensional mean shear-layer flow, which 
can be treated as locally parallel on the streamwise lengthscale over which the 
nonlinear effects take place. The latter occur entirely within the critical layer to the 
order of approximation of the analysis and determine the unknown amplitude 
function in the external solution. The pressure fluctuation is taken as the basic 
variable for the external flow, and the (linear) equation for this quantity is expressed 
in terms of ‘Squire coordinates’ in the directions along and perpendicular to the 
propagation direction of the wave, which causes it to be independent of its ‘ spanwise ’ 
transverse coordinate. 

We introduce a ‘slowly varying ’ amplitude function, which is ultimately 
determined by the nonlinear flow in the critical layer, which we analyse in $3. Squire 
coordinates are again used for the independent variables, but spanwise vorticity and 
temperature are now used for the dependent variables. 

The solution that matches onto the upstream linear solution and onto the linear 
solution outside the critical layer is then found by sequential integration of the 
resulting first-order partial differential equations. Matching with the linear external 
instability wave leads to a Hickernell (1984)-type equation that determines the 
amplitude of that wave. In  $4 we obtain an asymptotic solution of this equation that 
is valid in the vicinity of the singularity. Viscous effects are discussed in $5  where the 
viscous amplitude evolution equation is derived and an asymptotic solution to the 
latter is obtained. A discussion of the numerical solutions to these equations and 
comparison with the asymptotic solutions is given in $6. 

2. Formulation and solution outside the critical layer 
We are concerned with a nearly inviscid compressible shear flow of an ideal gas 

between two parallel streams with nominally uniform temperatures P),  F2) and 
velocities U(l)  > U(*). The upstream flow consists of an oblique (i.e. three- 
dimensional) spatially growing (i.e. time harmonic) instability wave on the steady 
two-dimensional shear layer that forms between the two streams. 

The flow parameters in the high-speed stream are used as reference quantities and 
are generally denoted by the superscript 1. The reference length, say 8, is taken to 
be some suitable thickness of the mean shear layer (e.g. momentum thickness). Then 
the steady flow is characterized by the Mach number 

M U(l)/C(l) (2.1) 

is the speed of sound in the high speed stream, v is the kinematic viscosity, k is the 
isentropic exponent of the gas, and 9 is the gas constant. 

We suppose that Re is large enough that the mean pressure is constant across the 
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shear layer and that the mean flow is nearly parallel over many wavelengths of the 
linear instability wave. 

Then the local mean density R, and mean temperature To are related by 

ROT, = 1, (2.4) 

and for purposes of our analysis T,(y)  can be thought of as a given (regular) function 
of y (see equation (2.17) below). When nonlinear effects do not first intervene, the 
gradual viscous spreading of the mean shear layer causes the spatial growth rate of 
the linear instability wave to gradually decrease (Crighton & Gaster 1976) until it 
approaches its neutral stability condition (i.e. point of zero growth), whose Strouhal 
number (i.e. frequency normalized by S/Ucl)) and streamwise and spanwise 
wavenumbers we denote by X,, a,, and Po respectively. 

Nonlinear effects will first become important at the streamwise position (upstream 
of the linear neutral stability point) where the local Strouhal number S is 

s = S,+E~SS,. (2 .5 )  

Here S,  < 0 is assumed to be 0(1), and E denotes the characteristic amplitude of the 
instability wave in this region. The instability wave growth rate, which is also 0 ( s $ ,  
is then completely determined by nonlinear critical-layer effects. Finally, we require 
that the origin of the spatial coordinates x, y ,  z ,  (with x in the streamwise and z in the 
spanwise directions) be located within this nonlinear region. 

There are at least two reasonable ways of choosing the spanwise wavenumber of 
the upstream linear instability wave. It is sometimes assumed to be real in strictly 
linear analyses of spatially growing modes in order to represent waves with fixed (i.e. 
steady) spanwise structure. However, this involves a t  least two modes with the same 
frequency and streamwise wavenumber but with equal and opposite spanwise 
wavenumbers. While these waves can be treated independently in strictly linear 
theories, they can interact nonlinearly in a nonlinear theory of the present type and 
greatly complicate the analysis. It is, on the other hand, possible to generate 
individual oblique modes that exhibit spatial growth along their propagation 
directions and most of the linear analyses have been concerned with this case 
(Gropengeisser 1969 ; Jackson & Grosch 1988, etc.). We therefore restrict the present 
study to this case. 

The pressure fluctuation of the upstream linear instability wave will then be of the 
form 

where t denotes the time, 
z = (a; + /3;)4, 

and 8 = tan-lP,/a, (2.7) 

= xcos8+zsin8-Uccos8t (2.8) 

u, cose = s,/a, (2.9) 

(2.10) 

denotes the direction of propagation of this wave relative to the mean flow direction. 
- 

is a coordinate in this direction in a reference frame moving downstream with the 
neutral phase velocity 

z1 = ~ i ( x  cos B + z sin 8 )  

is a scaled coordinate in the propagation direction, and 

$iS, Uc K 
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is a scaled complex wavenumber whose imaginary part is minus the growth rate of 
the linear near neutral instability wave. Z7,(y) is an  appropriate solution of the 
relevant Rayleigh's equation (for the pressure), which can be taken as the neutral 
solution to the required order of approximation. The complex constant at is a 
measure of the complex scaled amplitude of the wave. 

It is convenient to work in the oblique moving coordinate system {c y , ~ } ,  where 

z = -x sin O+z  cos 0. 

The velocity components {ti, v, @} in these coordinates are related to the velocity 
components {u, v, w} in the original {x, y, z ]  coordinates by 

(2.11) 

ti = ucosO+wsinO-U,cosO, (2.12) 

@ = -usinO+wcosO. (2.13) 

The instability wave continues to behave linearly outside the critical layer and we 
expect the solution to be of the form 

ti = cos OU( y ) + 8 Re F( y ) A t(zl) ei@ + &iz, + . . . , (2.14) 

v = - ez Re iO(y)At(zl) eizc+ e;v2 + . . . , (2.15) 

@ = -sin O[U, + U(y)  - ~iY'(y) Re iY(y) At@,) ei"c] + &m2 + . . . , (2.16) 

T = T,(y) + e Re @( y)At(zl) eizc+ &, + . . ., (2.17) 

p = 1 + ekM2 cos 0 Re Z7(y)At(zl) e'"c+e$, + . . ., (2.18) 

where U(y) + U, is the mean flow velocity, 
- < = 6-8, &/a, (2.19) 

and At is a function of the slow propagation direction variable z,, which will 
ultimately be determined by the nonlinear flow in the critical layer, but matching 
with the upstream linear solution requires that it satisfy the upstream boundary 
condition 

At-ate-4Ub"i/2 as ~ l + - ~ .  (2.20) 

The O($) terms were introduced to account for higher harmonics generated within 
the critical layer, but are independent of z and governed by linear dynamics outside 
the layer. In  fact, the entire solution (2.14)-(2.18) is independent of z and satisfies 
linear equations to the indicated order. 

The functions F ,  0, Y, 0 and 17 of y, zl and 8 are determined to the required level 
of approximation by 

(2.21) 2 ( U - C ) 2 F  = -T[ ~ ( U - C )  n+ U'DIT], 

(U-  c ) ~  D ~ T, D17-d2[T,--M2cos20(U-c)*]Z7= 0, 
(U--c)Z 

(2.24) 

where (2.25) 

(2.26) 
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the primes denote differentiation with respect to  the relevant arguments and we have 

(2.27) 

It follows from (2.25) and (2.26) that F, @, Y, 0 and IIexpand like 

F = Fl+€F,+ ..., n= I I l + ~ t I 1 3 + . . .  (2.28) 

etc. Substituting these into (2.21) to (2.25) we find that 

LII, = 0, (2.29) 

(2.31) 

-i2a-- II +-F, (2.32) ::( ; )] 
and so forth. where 

(2.33) 

is the linear compressible Rayleigh operator. 
Equations (2.29) and (2.30) must, in general, be solved numerically. Fortunately, 

it turns out that it is only necessary to know the local behaviour of their solutions 
at the critical layer where U(y) = 0. We shall use the subscript c to denote quantities 
a t  the critical level. Figures 20 and 21 of Jackson & Grosch (1988) show that the 
mode with the largest maximum spatial growth rate (over all frequencies) is an 
oblique wave. Their figure 5 shows that the neutral phase velocity of this mode is 
subsonic relative to both streams when M is less than five, and therefore, according 
to Lees & Lin (1946), has a critical level at one of the generalized inflection points, 
where (U'/q)' = 0 or 

(2.34) 

This remains true for Mach numbers up to about seven. Since real gas effects 
probably become important a t  higher Mach numbers, we restrict the analysis to this 
case and suppose that the critical level is at a generalized inflection point. 

This, so called, 'non-singular' critical level, which we can always suppose to lie a t  
the origin y = 0, is then a regular singular point for the operator (2.33), and hence 
(2.30) possesses two linearly independent homogeneous solutions that are com- 
pletely non-singular. We denote them by fi(l) and Z7(2), and it follows from general 
Frobeneous theory (Goldstein & Braun 1973, pp. 176-187) that we can choose them 

(2.35) 
so that 

and 3 2 )  = y3+ ... (2.36) 

licl) = 1--+a2y2+u4y4+ ... 
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cos2e . (2.37) 1 
as y+O, where 

Then we can write 
(2.38) 

where 6,  is a constant, which must be determined along with ti by solving (2.29) 
numerically and imposing proper boundary conditions at infinity (Gropengeisser 
1969). It now follows from (2.31) that 

1 -  T, 

as y+O (2.39) 

and similarly from appropriate equations obtained from (2.22) and (2.23) that 

@, = l - b , y +  ... 
and (see Reshotko 1960) 

(2.40) 

0, = Pc/(Uccos8y)+ ... as y+O. (2.41) 

It follows from (2.33), (2.35), and (2.36) that there exists two continuous functions, 
say lTp, , and lTp, 2, which satisfy 

and 

(2.42) 

(2.43) 

but are, in general, unbounded a t  y = & 00. 17p,l will behave like 

El + Ez y + E3 y2 + E4 y3 In Iyl+ E6 y3 as y + 0 

and 17p,2 will be regular there. The relevant solution to (2.30) must then be of the 
form 

where bk, ,c& are real constants (even on the slow scale z,), which can only be 
determined numerically. It can be shown that c;,, = ~ 2 , ~  because the critical layer 
cannot support an O($) pressure discontinuity (see the streamwise critical-layer 
momentum equation below). 

It now follows from (2.32) that 

b z l +  ... as y+&O. (2.45) 
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3. The critical layer 
Equation (2.41) clearly shows that the outer expansion (2.14)-(2.18) becomes 

singular at the critical level. The equations therefore have to be rescaled in this 
region in order to obtain the so-called critical layer solution. The thickness of the 
linear, small-growth-rate critical layer is of the same order as the growth rate, i.e. 
O ( 3 )  in the present case. The appropriate scaled transverse coordinate in this region 
is therefore 

Y = y/& 

Introducing this along with (2.19), (2.28), (2.38)-(2.41), and (2.45) into (2.14)-(2.18) 
and re-expanding the result shows that 

a = c i q  cos OY + tdq cos By2 - E Re b, At eiac 
+ E!(& U: P cos 0 + bounded, Y-independent terms) 

+&In d Re e2(zl) At cia,+ d 

M2u::2 cos2 0 -  YAt + el + e2 In IYl 

i2 
eiac+ harmonics + . . . 

p = 1 + e W 2  cosB-ReAteia,+$(bounded u:: Y-independent terms)+ ..., (3.3) 
T, 

3 Ye 1 
u:, cos 0 Y 

T = T,+efT: Y+sa----ReAtciac++sbST::Y2+ ..., (3.4) 

v = -eEReiAteiEc+... . (3.5) 

(3.6) 

(3.8) 

(3.9) 

This suggests that the critical-layer solution should expand like 

= € 2 ~  c o ~  ey+$q cos 0y2 + €G, + €-ii2 + e : ~ 3  + . . . , 
j ~ =  -,&ReiAteiaC++fi,+$" 5 v z + € 6 7 3 +  ...) (3.7) 

a = - U, sin 0 -  e i q  sin BY+ e h o  + &c, + E % ~  + . . . , 
p = 1 + +j,(6, Z,) + &* (5, El) + &pa + . . . , 
T = T , + ~ ~ ~ Y + e ~ ~ + + ~ i i l + e ~ + . . . . ,  (3.10) 

where we assume that the InEg terms have been incorporated into C,, ctc. 

ug. 
T, 

pl = cos B M 2  - Re At eiac 

and we have put 
2 

ii E e-'v. 

(3.11) 

(3.12) 
The Gn, f i n ,  @,, etc. are functions of 6, Y ,  and El, only. They are determined by the 

inviscid momentum, energy and continuity equations which, when expressed in 
terms of 6, Y ,  and El, can be written as 

(3.13) 

(3.14) 
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ii = (a, $7, a}, 

81 

(3.15) 
where we have put 

(3.16) 

and subscripts are used to denote partial derivatives with respect to the indicated 
variables. 

It is also convenient to work with the %component vorticity equation, which can 
be written as 

where 

(3.17) 

(3.18) 

is the %component of the vorticity. 

find 
Substituting the expansions (3.6)-(3.10) into these equations and using (2.34) we 

3n,+ + a n , ,  Gii(n-z)z, =-y9jjl Sn3 - for n =  1 ,2 ,3 ,  (3.19) 

(3.20) 

(3.21) 

20, = 0, (3.22) 

(3.23) 

(3.25) 

0, = ?&y, (3.26) 

(3.27) 

and used (3.21) to obtain (3.23) and (3.24) from the z-vorticity equation (3.17). 
Comparing these with the inner expansions (3.2)-(3.5) of the outer solution shows 
that 

q + 0 ,  (3.29) 

and Q,-o for n =  1 , 2 , 3  as Y - + ~ o o .  (3.30) 
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In  fact the entire inner solution will match onto the inner expansions of the outer 
solution (3.2)-(3.5) (to the order of approximation of the analysis) if 

2iZAil(b;, - b ,  2) -A a cos 0 (U, cos OA:, -isl A') (bi ,  - b ,  1)] eiac 

- &,dY+zeroth and higher harmonics in ei@c. (3.31) 

This equation ultimately determines the outer instability amplitude At and 
consequently the growth rate of that wave, but it is first necessary to determine 0, 
from (3.19)-(3.24), which can easily be done seriatim, since 9 is a simple linear 
operator (Stewartson 1978, 1981). 

- rm 
The relevant solution to (3.22) is the trivial solution - 

Q1 = 0. (3.32) 

It is convenient to work in terms of the following normalized variables: 

z=-LS 2 1 u' c X 1 - ~ 0 0 ,  - (3.33) 

7 = - 2 a  Y -  XU, s1 cos e )ywJc3 ( (3.34) 

x = a[-X,,  (3.35) 

(3.37) 

as z+-m (3.38) 

A = 4ti2At eiXo/( U, Sl)2 u',, (3.36) 

Q(n) = cos 0ti20,/S: U, q, 
where the coordinate origin shifts Z, and X, are chosen so that 

A eE.E+iv'o 

(see (2.20)), and the real constant cp, represents an, as yet, unspecified, initial phase 
factor. 

It is clear from (3.20)-(3.24) that pi('), Q(2) and Q ( 3 )  are functions of the form 

(3.39) 

(3.40) 

&(,) = Re [Qi3)(z, 7) eix + Qi3)(z, 7) e3ix]. (3.41) 

Our interest here is primarily in the first harmonic, Qi3) of Q(3) since i t  will ultimately 
determine the amplitude A when &(,) is substituted into (3.31). Substituting these 
into (3.19)-(3.34) and integrating the equations sequentially between - co and Z, we 
find that (Stewartson 1978, 1981) 

(3.42) 

and it is shown in the Appendix that the harmonic coefficients Qi2), Qk2) and QP) are 
given by (A 1)-(A 3). Integrating (A 3), we obtain 
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It is worth noting that the only non-zero contribution to this integral comes from the 
interaction of the mean flow change with the first harmonic (the last term in (A 3)). 

Then substituting (3.43) into (3.31) yields 

where (3.45) 

(3.46) 

are complex constants. 

wave. 
Equation (3.44) is the final result. It determines the amplitude of the instability 

4. Asymptotic solution of the amplitude equation 
The principal result of this paper is given by (3.44) together with the upstream 

boundary condition (3.49). The numerical solutions to this problem, which are 
discussed in $6, appear to develop a singularity a t  a finite value of Z, say zs. In  this 
section we determine the asymptotic form of those solutions as Z+ zS. To this end we 
substitute 

where zS and (T are real constants and a is a complex constant, into the integral of 
(3.44) and change the integration variables from 4 and 2 to (Zs-d)/(zs-Z) and 
(zs-55)/(zs-z) to  show that 

lm Lrn A ( f  ) A (4) A * (4 + 2 - z) (z- q2 dd df = (Zs -@air D(a),  (4.2) 

(4.3) 

where (a), denotes the generalized factorial function T(a+ n ) / f ( a )  in the usual 
notation. 

A,  becomes large compared with A as Z+zs, and the left-hand side of (3.44) is 
balanced by the integral term on the right-hand side. Substituting (4.1) into the left- 
hand side shows that the two terms will balance when (T satisfies 

(4.5) 

Figure 1 shows u as a function of arg ( y / R )  = arg [D/(%+ia)]. Figure 2 is a plot of 
lyllu12/l~ = ID/($+ia)l as a function of arg(y/R). 
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FIQURE 1.  CT us. arg(y/i?). 
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0 i x  x 3x 2 x  

arg ( Y l b  

FIGURE 2. IyI us. arg (y /R) .  

5. The viscous solution 
The preceding analysis is easily extended to the viscous case where the scaled 

h = l / R e &  (5.1) 
viscous parameter 

and the Prandtl number go are both of order one. The flow outside the critical layer 
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is only slightly affected by viscosity and matching with the altered solution requires 
that we replace the coefficient of €2 in (3.6) by ~ ~ ( c o s 6 Y 2 + 4 h , c o s 2 6 ~ ~ / U C ) ,  and 
allow S ,  and G2 to depend on ,Z through the additional terms - 2A; 
and - 2A, UL sin2 6 Z/Uc, where 

sin 6cos 6 r/U, 

A, = 4%) T,  
and p = p ( T )  is the normalized viscosity. 

The additional term 
AJ a -- 

ay@y 

will appear on the right-hand side of (3.13), the second member of (3.14) will be 
replaced by 

1 [ 1 DT- - - - - - ( k  - 1) Wp(a$ + a$) , 1 he; a pTy Aeg 

k - 1  T P ay go P 

the operator (3.16) has tht.. additional term aa/aq and the terms 

will appear on the left-hand side of (3.17) to the required order of approximation. 
For simplicity we suppose that the viscosity p ( T )  is given by Chapman’s law 

p(T) = CT, 

where C is Chapman’s constant, and consider only the case where 

go = 1. (5.2) 

The analysis then proceeds as in $3 but the differential operator in (3.20)-(3.24) must 

be replaced by - a 2  
9 - A c - ,  

ay2 

h 
2 [K cos 8Toy + 2 ( ~ ~ ( k  - i)  q2 - T, q/ u,) cos 8 sin 8Go y1 
T,  

the additional terms 

appear on the right-hand side of (3.24) (after making use of the fact that  (3.32) still 
holds), &, is now defined by (3.28) plus 

and is replaced by 

+ * [W( k - 1) qz + c]. 
u, COB e T,  

These equations, along with the corresponding equation for Go are easily solved 
seriatim using the Fourier transform method of Hickernell (1984). Upon introducing 
the Fourier transform pair 

ePik?F(q) dy, F ( y )  = (5.3) 
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and 

respectively, where H ( k )  is the Heaviside function H ( k )  = 1 , O  for k 3 0 and 

- 8hc Z2 

(-slUc)3ucCOSe 

is a new scaled viscous parameter and $I") is given by a similar formula. 

generalizes to 
Using this new solution in (3.31) shows that the final equation (3.44) now 

-- dA - - A - [ 
3 dz Y -m 

e-x(Z-~)*[3(Z-~)-(Z-e)1/3 

x A (2)  A ($) A * ( B  + f - Z) (2- f ) 2  d$ df . (5.7) 
The only new term in this generalized equation is the exponential factor whose 

argument is always negative. This term is therefore memory destroying and becomes 
very small as Z+ 03 unless 2 x f x Z. It follows that 

1 1 
-A,+A-7AIA12Q as 2-t 00, (5.8) K yhr 

where 

and consequently that 

and 

Y 

Im-+- - : 

(5.9) 

(5.10) 

(5.11) 

(5.12) 
R 

as E+ co , provided Re- > 0. 
Y 

Thus, unlike (3.44), the viscous amplitude equation admits an equilibrium solution. 
Numerical computation must be used to determine whether the solution of (5.7) that 
matches with the upstream linear solution goes to  the asymptotic limit (4.1) or (5.10) 
in any given case. 

6. Numerical results and discussion 
The relevant solutions to (3.44) and (3.38) involve the two complex parameters R 

and y and the still unspecified initial phase factor tpo. But introducing the rescaled 
variables A/lyli Id2 and Id E-z,,, where z0 and rpo are chosen so that 

shows that these solutions can be completely characterized by the two imaginary 
parameters In (g//Id) and In (y/ ly l ) ,  or equivalently by the arguments of 3 and y. The 
real part of K is the scaled growth rate of the upstream linear instability wave in the 
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FIGURE 4. ReA’/A ws. E (argi? = 0). 

vicinity of its neutral stability point, and the imaginary part is the scaled deviation 
of the wavenumber from its neutral value corresponding to the prescribed Strouhal- 
number deviation S,. 

Equation (3.44) was solved numerically by using a fourth-order predictor- 
corrector scheme to advance the solution downstream from the prescribed upstream 
linear state (3.38). The double integrals were computed by using the trapezoidal rule 
with the upstream ‘tails ’ evaluated analytically from the upstream linear solutions. 
i? and y must, in general, be found numerically by solving the homogeneous and 
inhomogeneous Rayleigh’s equations (2.33), (2.42), and (2.43). 

Figures 3-5 are plots of the instability wave growth rate IAlz/lAI for various values 
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of arg y and arg 3. We only show results for -in < argK < 0 because (3.44) implies 
that A(E,  R*, y*) = A*(z,  3, y). Considerable care was taken to ensure that the 
oscillations in figure 5 were not due to the numerics. The reason for this behaviour 
is given below. Notice that the upstream linear growth rate is initially reduced 
when -in < arg (i?/y) .< in. This is because the nonlinear term behaves like 
- IAI2A/(64ye) for small IAI, where K~ = Re i?. The effective growth rate is therefore 
reduced by the factor 

1-IA12cos(argF?-argy)/(641yl e c o s  (arg3)). 

But (except in the special caset argy = a r g 3  = 0) this trend is eventually reversed, 
and the growth rate rapidly increases until the amplitude becomes singular a t  some 
finite downstream distance for all values of arg (e /y) .  

This is shown somewhat better in figures 6-8, which are plots of the real part of 
InA versus the scaled stream'wise coordinate Z. Also shown in the figures are the 
results computed from the asymptotic solution (4.1), with the singularity location E, 

determined from the numerical solution. The latter solutions clearly approach the 
asyptotic result as lzS-q becomes small. Since (4.1) implies that  the asymptotic 
growth rate 1,41,/1A1 behaves like (IAl/lal)% in the vicinity of the singularity, the initial 
scaling, i.e. growth rate = O(cf), is unchanged by the singularity. This suggests that 
the basic asymptotic structure of the critical layer will remain intact, and the present 
solution will not break down until the amplitude \A\ of the external instability wave 
becomes order one. The flow will then be fully nonlinear and unsteady in the main 
part of the shear layer, i.e. it will be governed by the full Euler's equations there. 

Equations (2.10), (2.14), (2.19), (3.33), (3.45), and (4.1) show that this occurs when 

z-z, = 0(1), (6.2) 

where 

t The exceptional case cannot occur for any physically realizable flow and will not be considered 
further. 



Nonlinear evotution of oblique waves on shear layers 

8 

6 

4 

Ln IAl 

2 

0 

-2 

I I I I I I 

-6 

8 -  

6 -  

4 -  

2 -  

Ln IAl 
0 -  

-4  - 2  0 2 4 6 

FIQURE 6. LnlA( vs. 

.r 

(argK = -in). 

89 

-6 
-6 -4 -2  0 2 4 
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P 

is the singularity location in the unscaled streamwise coordinates. The fully nonlinear 
region therefore has a streamwise lengthscale on the order of the shear layer width. 

Figures 6-8 show that the instability wave amplitude undergoes successive 
oscillations upstream of the singularity for certain combinations of arg K and arg y. 
Similar behaviour was observed in the two dimensional analysis of Goldstein & Leib 
(1988) and in the calculations of Benney & Maslowe (1975), Huerre (1977), and Miura 
& Sato (1978). The amplitude oscillations imply periodic reversal of energy transfer 
between the fluctuations and the mean flow, and possibly between the fluctuations 
themselves. By considering the Reynolds-stress changes that occur with nutating 
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FIGURE 9. ImA’/A ws. 5 (argR = -in). Dashed lines are asymptotic results 
computed from (4.1). 

elliptic vortices, Browand & Ho (1983) came up with a simple kinematic explanation 
for this phenomenon. The reader is referred to  Ho & Huerre (1984, p. 410) for details. 

It is also worth noting that the asymptotic instability wave amplitude is uniquely 
determined by the asymptotic solution and is therefore independent of the upstream 
conditions. Figures S 1 1  show the wavelength reduction Im (A,/A) as a function of 
the scaled streamwise coordinate Z. The dashed lines are the asymptotic results 
computed from (4.1). 

The numerical scheme used for the inviscid calculations was found to be 
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inadequate for computing the amplitude function A over the long distances required 
for certain viscous cases. To compute these cases we introduce 

as new variables of integration in (5.7). 
Figure 12 shows numerical solutions of (5.7) for a case when the inequality (5.12) is 

violated. The effects of increasing the viscous parameter h is to keep the growth of 
the instability wave linear over a longer distance and delay the explosive growth 
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FIGURE 13. Ln IAl us. Z(argR = -in, argy = -in, h = 0, i, 5,20, curves (a-d) respectively.) Dashed 
lines show asymptotic results computed from (4. l ) ,  dotted lines show the finite-amplitude 
equilibrium given by (5.10). 

associated with the singularity. The asymptotic solution in the vicinity of the 
singularity is still given by (4.1) for this case and is shown as the dashed curves in 
figure 12. For this choice of argi? and arg y the singularity can be delayed but not 
eliminated for any finite value of h. 

In  figures 13 and 14 we show the numerical results for two cases when (5.12) is 
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FIGURE 14. LnlAl 216. Z (arga = -;Z, argy = -in, = 0,10,20,30,50, curves (a-e) respectively.) 
Dashed lines show asymptotic results computed from (4. I ) ,  dotted lines show the finite-amplitude 
equilibrium given by (5.10). 

satisfied. For these cases it can be seen that the solution goes to the finite-amplitude 
equilibrium solution given by (5.10) for sufficiently large x. The latter are shown 
dotted on the figures. The minimum value of 2 for which this occurs is a function 
of argK and arg y. For smaller values of x the solution becomes singular and the 
asymptotic solution is again given by (4 .1)  (shown dashed). 

The two parameters K and y which appear in the amplitude evolution equations 
(3 .44)  and (5 .7 )  involve the constants bi, ,-b;, l  and bi ,2-b i ,2  defined by (2 .44) .  The 
latter must be determined by numerical solution of the inhomogeneous Rayleigh 
equations (2.42) and (2 .43) .  This calculation was carried out for a few specific cases 
and the corresponding values of K and y are presented in figure 15. 

The mean velocity profile was taken to be a tanh one in the Howarth (1948) 
coordinates with the mean temperature given in terms of the velocity by a relation 
valid for (-ro = 1 .  

Figure 15 shows the real and imaginary parts of yEUc TL/(T,S, cose) and KUc cos8 
for the case when the lower stream is heated to twice the upper stream temperature 
(T, = 2), and the angle of propagation of the instability wave is 60° over a range of 
Mach numbers. At M = 2.5 the maximum linear growth rate occurs in the vicinity of 
this value of 8 (Jackson & Grosch 1988, figure 20a) .  In  addition the numerically 
computed values of K and y a t  this Mach number are within the range (5 .12) .  
Therefore we expect that, for this set of physical parameters, the most rapidly 
growing linear instability wave would eventually saturate and approach an 
equilibrium condition due to nonlinear critical-layer effects when x is sufficiently 
large. 

The authors would like to thank Drs Lennart Hultgren, J .  Gajjar, S. J. Cowley, 
and S. W. Choi for their helpful comments on the manuscript and Dr S. Khandelwal 
for his help with the numerical calculations. 
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Appendix 
In this Appendix we determine the first-harmonic component QY) of Q(3).  
Substituting (3.33), (3.37), (3.39) to (3.41) into (3.23) and integrating, we find that 

where the asterisk denotes complex conjugates and 
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FIQURE 15. (a) Real and (a) imaginary parts of yhUfq /T ,S ,  C O S ~ ;  (c) real and ( d )  imaginary parts 
o f q c o s e ; f o r  T , = 2 ,  e = 6 0 ° .  

Finally, substituting (3.40), and (A 1) and (A 2) into (3.24) and integrating, we 
obtain 

Q\3) = -L(%-%)J e-b(z-3) [t(& Uccos(jA,+iA(f)]d2 
2uc uc T, -m 
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